Arsenic distribution and occurrence in ground-water from Coastal Plain aquifers of Maryland

Preliminary Results

David D. Drummond

and

David W. Bolton

Maryland Geological Survey

Funding

Maryland Department of Natural Resources

Maryland Department of the Environment

Location of study area

Schematic Cross Section Baltimore to Ocean City

Coastal Plain Aquifers of Maryland

Ground-water flow in the aquifers

Not to scale

Hydrochemical zones in aquifers

Not to scale

Arsenic concentrations in the Aquia aquifer

Arsenic concentrations in the Piney Point aquifer

Flowchart to process county arsenic data from domestic wells

Tax map in Calvert County COVE PUINT BADD CUMET LA RUBERT H. POUNCEY ULB 107/192 13.07A 13.71 E.Mc CLOUD P88 Me3 ABE259/815 P.137 **DAWEDELT** 5.00 A. 10 JLB 207/604 BRIANWOOD 9.00 A. P.126 58 12.209 54R SSR 26 JEB 1:841 REC, AREA R. WOOD , ETAL RECREATION \ P/∏ \ P.180 AREA ABE 227/785 40.00A. 3-BR / REVISE: P. 52 3-0 FOR OWNERSHIPS SEE-PARCEL BOOK

Maryland Property View shapefile

Domestic wells with arsenic analyses

Information available for wells

Properties with arsenic analyses

Arsenic concentrations in the Aquia aquifer

Forms of dissolved arsenic

- Arsenate (As+5) (As V)
 - Oxidized form
 - Moderate toxicity
- Arsenite (As+3) (As III)
 - Reduced form
 - Highest toxicity
- Organic arsenic
 - Combined with carbon, oxygen
 - Low toxicity

Arsenic complexes

H₃AsO₃⁰
Reducing conditions
Neutral
Weakly adsorbed

H₂AsO₄ Oxidizing conditions Low pH Negative charge Strongly adsorbed

HAsO₄² Oxidizing conditions High pH Negative charge Strongly adsorbed

Arsenic on mineral surfaces

(modified from Brown, 1990)

Adsorption

Outer-sphere complex (physisorbed)

Inner-sphere complex (chemisorbed)

Precipitation

Surface Precipitation

Arsenic trends

- Areas of elevated arsenic parallel trends in major-ion composition.
- Water chemistry evolves along predevelopment flow path in Southern Maryland.
- Water chemistry does not seem to evolve along pre-development flow path on the Eastern Shore.

Calcium concentrations in the Aquia aquifer

Sodium concentrations in the Aquia aquifer

Possible sources of arsenic

- Recharge water (precipitation <1 µg/L)</p>
 - Requires concentration mechanism
- Iron oxyhydroxide coatings on minerals
 - Reductive dissolution
- Shell material
 - Arsenic substitutes for calcium
- Phosphate pellets
 - Arsenic substitutes for phosphorous
- Glauconite
 - Ion exchange

Conclusions

- Arsenic concentrations exceed the MCL of 10 µg/L in ground water from some areas of the Aquia and Piney Point aquifers.
- The source of dissolved arsenic is natural, and probably derives from minerals within the aquifers.
- The distribution of arsenic is controlled by complex chemical interactions between ground water and aquifer material:
 - Reductive dissolution of iron oxyhydroxides
 - Dissolution of calcite or phosphate
 - Ion exchange on glauconite